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Recurrence relations and explicit combinatorial expressions are derived for 
the number of Kekuld structures of certain multiple-chain condensed aromatics. 
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Topologische Eigenschaften benzenoider Systeme, 35. Mitt. : 
Anzahl yon Kekuld~Strukturen von Mehrfachketten-Aromaten 

Es werden Beziehungen und explizite kombinatorische Ausdrficke ffir die 
Anzahl m6glicher Kekuld-Strukturen bestimmter mehrfachkettiger kondensierter 
Aromaten abgeleitet. 

Introduction 

General 

The enumeration of KekulO structures of polycyclic aromatic (benzen- 
oid) hydrocarbons has been studied by various authors over a quite long 
period of time [1-30]. This research field has accelerated tremendously 
during the last years. Notice that 73 percent of the references cited here are 
from 1980 or later. Combinatorial expressions are known for the number 
of KekulO structures of numerous particular classes of  aromatic hydrocar- 
bons [3, 4, 10-13, 16, 17, 19, 21~0] ,  yet a general solution of the 
enumeration problem (in terms of  explicit formulas) has not been reached 
and is probably not to be expected. One of  the present authors considered 
recently [19] the single-chain aromatics and offered a recursive technique 
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I I 
L(n) = L(l,n) 

A(n) = A(1,n) 

Fig. 1. Single-chain (1 x n) aromatics 

L(2,n) 

A(2,n) 

Fig. 2. Double-chain (2 x n) aromatics 

for  the calculat ion of  their KekulO structure count ;  similar results have 
been repor ted  also elsewhere [-3, 7]. In  the present  w o r k  we wish to extend 
the previous results [19] to mult iple-chain aromat ics .  

Previous Results 

Consider  for  the beginning the following single-chain aromat ics :  the 
linear polyacene L(n)  and the zigzag polyacene A (n), which are presented 
on Fig. 1. I t  is well known  that  L(n) has n + 1 KekulO structures [3] 
whereas  the n u m b e r  of KekulO structures o f  A(n)  is equal  to Fn + 1 when Fn 
is the (n + 1)-th Fibonacci n u m b e r  [3, 21]. (Recall  that  F 0 = F 1 = 1, F 2 
= 2 . . . .  , etc. and F~ + 2 = F~ + 1 + F~.) We shall denote  these facts as 

K{L(n)} = n +  l, K{A(n)} = F , + I .  
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By joining two L (n)-fragments we obtain the double-chain homologue 
of the linear polyacene, which will be denoted by L (2, n). The double chain 
homologue of A(n) is constructed analogously (see Fig. 2). 

In the same manner we define the m-chain homologues of L (n) and 
A(n) and denote them by L(m, n) and A(m, n), respectively (see Fig. 3). 

.. - ." ." 

L(m,n) A(m,n) 

Fig. 3. Multiple-chain (m x n) aromatics 

It is a classical result of Kekulk structure enumeration that [-3, 4] 

n m!n!  (1) 

No combinatorial formula for K{A(m,  n)} is known in the literature in 
spite of the fact that the class A(m, n) embraces a variety of important 
aromatic hydrocarbons. In the present paper we wish to contribute to this 
problem. 

Results and Discussion 

Auxiliary Class 

In order to calculate K{A (m, n)} consider a more general (auxiliary) 
benzenoid system, namely A (m, n, k), obtained by attaching k hexagons to 
A (m, n). The way in which the hexagons of A (m, n, k) are labeled can be 
seen from Fig. 4. 

By definition, A (m, n, O) = A (m, n) and A (m, n, m) = A (m, n + 1). 

The Main Recurrence Relation 

The KekulO structures of A (m, n, k) can be divided into two groups. In 
the first group are those in which the edge indicated by an arrow in Fig. 4 is 
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. . . . . .  . , ,  
. . .  

A(m,n,k) 

Fig. 4. The multiple (m x n) zigzag chain aromatics augmented by a row of k 
benzenoid rings 

. . . . . . . . .  , . . . .  

I 

II 

Fig. 5. Definition of two types of Kekulk structures for A(m, n, k) 

a double bond  (see formula  I o f  Fig. 5). In  the second group are those 
Kekuld structures o f  A (rn, n, k) in which the edge indicated by the ar row is 
a single bond.  In  that  case a number  o f  double  bonds  must  be located at 
certain positions o f A  (m, n, k), as shown by formula  II  o f  Fig. 5. The total 
Kekuld structure count  o f  A (rn, n, k) is equal to the sum of  the number  o f  
Kekuld structures o f  these two kinds. F r o m  formula  I it is evident that  the 
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number of Kekulf structures of the first kind is equal to the number of 
Kekulk structures of the system obtained by deleting the k-th hexagon 
from A (m, n, k). Similarly, formula II implies that the number of Kekuld 
structures of the second kind is equal to the number of Kekuld structures of 
the system obtained by deleting from A (m, n, k) the hexagons, 1, 2 , . . . ,  k, 
(1, n), (2, n) ... .  , (k, n). It is not difficult to see that the latter deletion 
process leads to A (m, n - -  1, m--k). 

Hence we arrive at the recurrence relation 

K{A(m, n, k)} = K{A(m, n, k--1)} + K{A(m, n--l ,  m--k)} (2) 

which holds for m ~> k > 0 and n ~> 1. In the case when k = 0 and n ~> 2, 
instead of (2) we have 

K{A(m,n,O)} = K{A(m,n--l ,m--1)} + K{A(m,n--2,0)} (3) 

As a matter of fact, because A (m, n, 0) = A(m, n - - l ,  m), formula (3) is a 
special case of (2). 

The recurrence relations (2) and (3) together with the initial conditions 

K{A(m, 0, k)} = K{L (k)} = k + 1 (4) 
and 

K{A(m, 1, 0)} = K{L(m)} = m + 1 (5) 

enable the calculation of K{A(m, n, k)} and K{A (m, n)} for all values of 
m, n and k. 

We wish to make the subsequent formulas also valid for m, n, k equal 
to zero. Then it is expedient to define K{L(0)} = 1 in consistence with (4) 
and (5). Furthermore, we define for all m and n: A(m, 0 ) =  A (0, n) 
= L(0). This is the trivial case of "no hexagons". 

Summation Formulas 

By a repeated application of (2) and (3) we obtain a series of identities 
relating K{A (m, n)} with K{A (m, n--j, i)}, i = 0, 1, . . . ,  m. Herejis a fixed 
parameter. For j = 2, 3, 4 and 5 these identities read as follows. 

K{A(m,n)} = ~ K{A(m,n--2, i)} (n..->2) (6) 
i - 0  

K{A(m,n)} = ~, (i+ 1)K{A(m,n--3, i)} (n>~ 3) (7) 
i = 0  

( ;) K{A(m,n)}= ~ ( i+1)  m + l - - ~  K{A(m,n--4, i)} (n>j4)(8)  
/ = 0  

K{A(m,n)}= ~ ~ ( i + l )  (m + l) (m + 2 ) - -  ( i + 2 )  
i = 0  

K{A(m,n--5 ,  0} (n ~> 5) (9) 
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With increasing values of j, the above equations become more and more 
complex. The analogous identities for j > 5 have not been derived. 

i.e. 

Recurrence Relations for K{A(m, n)} with Fixed Values of m 

First we have the trivial "recurrence" relation for m = 0: 

K{A(0, n)} = K{A(0, 0)} (10) 

In the case of the single zigzag chains (m = 1), Eq. (3) gives immediately 

K{A(1, n, 0)} = K{A(1, n - - l ,  0)} + K{A(1, n--2,  0)} 

K{A(1, n)} = K{A(1, n - -  1)} + K{A(1, n--2)} 

i.e. 

K{A(n)} = K{A(n--1)} + K{A(n--2)} (n ~> 2) 

which is the well-known Fibonacci recurrence relation [3, 21]. 

(11) 

In the case of the double zigzag chains (m = 2), Eqs. (2) and (3) result in 

K{A(2,n, 1)} = K{A(2, n,O)} + K{A(2,n--1,  1)} (11 a) 

and 

K{A(2,n,O)} -- K{A(2,n--1,  1)} + K{a(2 ,n- -2 ,  0)} (11 b) 

Eq. (11 b) can be rewritten as 

K{A(2,n--1,  1)} = K{A(2,n,O)}--K{A(2, n--2,0)} ( l lc )  

which immediately gives 

K{A(2, n, 1)} = K{A(2,n + 1, 0)} --K{A(2,  n - - l ,  0)} (11 d) 

Substitution of (11 c) and (11 d) back into (11 a) gives 

K{A(2, n)} = 2K{A(2, n-- l )}  + K{A(2, n - - 2 ) } - -  
K{A(Z,n--3)} (n >~ 3) (12) 

An analogous, yet much more laborious calculation results in 
recurrence relations for the Kekuld structure count of A(m, n) for higher 
values of m. For m = 3, 4 and 5 these relations are: 

K{A(3, n)} = 2K{A(3, n-- l )}  + 3K{A(3, n--2)}--K{A(3,  n--3)} 
--K{A(3,n--4)} (n ~> 4) (13) 

K{A(4, n)} = 3 K{A(4, n--1)} + 3K{A(4, n--2)}--4K{A(4,  n--3)} 
--K{A(4,  n--4)} + K{A(4, n--5)} (n >/5) (14) 

K{A(5, n)} = 3K{A(5, n- - i )}  + 6K{A(5, n--2)} - 4K{A(5, n--3)} 
- -  5K{A(5, n--4)} + K{A(5, n--S)} + K{A(5, n--6)} (n >~ 6) (lS) 
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The benzennoid members of relevance to Eqs. (11) and (12) were 
studied extensively by Randik [9] under the names of the phenanthrene- 
chrysene and pyrene-benzoperylene family, respectively. Eqs. (11)-(13) 
are special cases of recurrence formulas involving certain polynomials as 
given by Ohkami and Hosoya [23], while (14) and (15) are given here for 
the first time. 

Combinatorial Expressions for K{A(m, n)} with Fixed Values of n 

In this section we deduce explicit analytical expressions for the number 
of Kekuld structures of A (m, n), where n has a fixed value. 

For n = 1 we have 

K{A(m, 1)} = m + 1 (16) 

which is an obvious corollary of (5). 
In order to enumerate the Kekuld structures of A(m, 2), set n = 2 into 

(6). Then because of (4), 

K{A(m, 2)}= ~ K{A(m,O,i)}= ~ ( i+1)  
i = 0  i = 0  

which gives 

1 
K{A(m, 2)} = ~(m + 1) (m + 2) (17) 

This is consistent with the known (and previously mentioned) result 

since A (m, 2) = L (m, 2). 

For higher values of n the procedure is the same: one has to set n = 3 
into (7), n -- 4 into (8) or n = 5 into (9), etc. An elementary, but somewhat 
more complex calculation gives then 

1 
K{A(m, 3)} = ~ (m + 1) (m + 2) (2m + 3) (18) 

1 
K{A(m,4)} = ~ ( m +  1)(m + 2)(5m2 + 1 5 m +  12) (19) 

4 
K{A(m, 5)} =~.(m+t)(m+2)(2m+3)(2m2+6m+5) (20) 

Note that formula (18) has been first obtained by Gordon and Davison [_3] 
and recently deduced in another manner by Ohkami and Hosoya [23]. 
Three further results of the same type are obtained by combining the 

39 Monatshefte fiir Chemie, Vol. 118/5 
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identities (6)-(9) with the combinatorial expressions (25)-(27) of the 
subsequent section. They read: 

1 
K{A(m, 6)} = ~ (m + 1) (m + 2) (61 m 4 + 366 m 3 + 845 m 2 + 888 m 

+ 360) (21) 

2 
K{A(m, 7)} = ~.T (m + 1) (m + 2) (2 m + 3) (68 m 4 q- 408 m 3 ~- 949 m 2 

+ 1 011 m + 420) (22) 

1 
K{A(m, 8)} = 8.T (m + 1) (m + 2) (1 385 m 6 + 12 465 m 5 + 47 517 m 4 

+98127m3+l15810m2+74136m+20160) (23) 

Contrary to (16)-(18), the formulas (19)-(23) have not been known 
previously. It is noted that all the polynomials of (17)-(23) have the 
common factor (m + 1) (m + 2). For the odd-number m values 3, 5 and 7 
they have (2 m + 3) in addition. 

Combinatorial Expressions for K{A(m, n, k)} with Fixed Values of n 
It can be shown that the following identity holds for m ~> k ~> 0 and 

n~>l. 
k 

K{A(m, n, k)} = Z K{A(m, n - - l ,  m--/)} (24) 
i = 0  

Setting n = 1 into (24) and using (4) one attains at 
k k 

K{A(m, 1,k)} = ~ K{A(m,O,m--i)} = Z (m--i+ 1) 
i = 0  i = 0  

which finally results in 

K{a(m,  1, k)} = (k + 1) m + 1--~- (25) 

In a similar manner we deduce 

 26, K{A(m, 2, k)} = ~ (k + 

and 

K{A(m, 3,k)} = ~ ( k +  1) ( k +  1 ) (k+  2) + 

+ I(m + l)(m + 2)--k(k  + 2)l(2m + 3)} (27) 
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Conclusion for Multiple Zigzag Chain 

Concluding the consideration of the multiple zigzag chain aromatics 
we may summarize that the derived formulas enable us to enumerate the 
Kekulb structures for quite sizable aromatics of the type A (m, n), in 
addition to the auxiliary type A (m, n, k). As far as the cases with k = 0 are 
concerned we have listed the K values in numerical form in Table 1. The 
second column constitutes the Fibonacci numbers. The eight first 
numerals of the third column have also been reported by RandiO [9]. The 
values below the staircase-line (Table 1) are obtainable by (a) the 
recurrence relations (10)-(15), if the values above the staircase are known. 
All K values above the bottom line (n ~< 8) are available through (b) the 
explicit formulas (16)-~23). The values between the two lines were 
calculated by both methods (a) and (b). The identity of  the results gives a 
convincing check of the correctness of our formula apparatus. 

Table 1. Number of Kekulk structures (K) for the A(m, n) aromatics 
with m 4 5 and n <~ 10 

m = 0  m = l  m = 2  m =3  m = 4  m = 5  

K{A(m, 0)} 1 1 1 1 1 1 
K{A(m, 1)} 1 ] 2 3 4 5 6 
K{A(m, 2)} 1 3 l 6 10 15 21 
K{A(m, 3)} 1 5 14 [ 30 55 91 
K{A(m,4)} 1 8 31 851 190 371 
K{A(m, 5)} 1 13 70 246 671 I 1 547  
K{A(m, 6)} 1 21 157 707 2 353 6405 
K{A(m, 7)} 1 34 353 2 037 8 272 26 585 
K{A(m, 8)} 1 55 793 5 864 29 056 110 254 

K{A(m, 9)} 1 89 1 782 16 886 102 091 457 379 
K{A(m, 10)} l 144 4004 48620 358671 1 897214 

Combinatorial Expression for K{L(m, n, k)} 

In full analogy to the benzenoid system A(m, n, k) we may define the 
classes L0(m, n, k) and L(m, n, k), which are obtained by attaching k 
hexagons to L(m,n); see Fig. 6. 

Since L 0 (m, n, k) has an odd mtmber of atoms, we immediately see that 

K{L0(m, n, k)} = 0 

provided that 0 < k < n. 
The number of Kekulk structures of L(m,n,k)  is non-zero. By 

definition L(m, n, 0) = L(m, n) and L(m, n, n) = L(m + 1, n). Note also 
that L(m, n, n - - l )  = L ( n - - l ,  m + 1, m). 

39* 
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,* °° ,.° ,° 

Lo(m,n,k) 

*i °, 

L(m,n,k) 
Fig. 6. Two ways in which the multiple linear (m x n) chain aromatics can be 

augmented by a row of k benzenoid rings 

A me thod  equivalent  to that  used for  the derivat ion of  (2) results now 
in 

K{L(m,n,k)} = K{L(m,n,k--1)} + K{L(m,n--k,O)} (k >~ 1) 

Taking  into account  Eq. (1), we have 

K{L(m,n,k)} = K{L(m,n,k--l)} + (m +mn--k ) (28) 
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A repeated application of (28) leads to the following summation formula 

K{L(m, n, k)} : 2 m 
i=0 

For k = 0, Eq. (29) gives correctly the old result (1). For k = n the 
summation gives 

K{L(m,n ,n ) }  = K { L ( r n  + l ,n)} =(mm+ n + l 

in accord with (1). A novel formula emerges for 0 < k < n, viz. 

+ 1 - -  m + 1 J (30) 
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